

The Role of Electrical Engineers in Ship Design

John W. Rockway 15 March 2019

Key to the 21st Century is innovative, cross-discipline engineering!

EM Integrated Topside Design is a long term technology challenge of critical importance.

Performance Analysis General System Link Equation (dB)

$$(\mathbf{G}_{te} + \mathbf{P}_{te}) + \left(\mathbf{G}_{re} - \mathbf{T}_{rsys} - \mathbf{T}_{ext}\right) - \mathbf{k} - \mathbf{L}_{prop} \geq \left(\frac{\mathbf{S}}{\mathbf{N}_{o}}\right)_{required}$$

 S/N_o – signal power to noise density

- **G**_{te} effective transmit antenna gain
- P_{te} effective transmit power radiated
- T_{ext} external noise (1/°K)
- **G**_{re} effective receive antenna gain
- T_{rsys} receiver performance (1/°K)
- k Boltzmann's constant (1.381 e⁻²³)
- L_{prop} total channel loss

EM Topside Integration Process Iterative Analysis

Antenna Design, Arrangement/Analysis

Although a ship may be large, only limited areas are available for antennas.

Antenna locations on mast are very contentious!

Antenna Analysis EM modeling is wavelength dependent!

Physical Modeling

Computational Modeling

frequency 3 30 300 MHz resonant region transient region ray optic region

Physical Modeling

1/48th Scale Brass Models impedance coupling

Scale Model Pattern Range 360° Azimuth, 3° - 90° elevation cuts 1 - 30 MHz amplitude and phase

Scale Model Time Domain Range Bounded Wave Simulator HF RCS (Ship Resonances) Lightning Protection EMP Protection

Computational Modeling

resonant region NEC-MoM, EIGER

ray optic region NEC-BSC

Cyclone Class Patrol Craft, PC-1 EIGER Modeling - VHF Antennas

Surface/Wire Model

NEC - Basic Scattering Code Active Phase Array Antenna

Antenna Model

Free Space Pattern

prop – Channel Loss

$$L_{prop} = L_{fs} \ L_{abs} \ L_r \ L_{pf}$$

• L_{fs} – free space

$$L_{fs} = \frac{1}{(4\pi r f/c)^2}$$

- r propagation path (meters)
- f frequency (Hz)
- c speed of light (meters/sec)
- *L_{abs}* absorption
- L_r rain
- *L_{pf}* propagation factor
 - surface reflection, atmospheric refraction, scattering from atmospheric inhomogeneities and earth surface diffraction

Marine Environment Ducting

In the topside there "will be" insufficient isolation between Tx and Rx systems.

COSAM - Cosite Analysis Model

- Interference interaction between Tx and Rx pairs is analyzed.
- The equivalent input on-tune interference power (P_{ino}) is calculated.
 - Non-linear circuit analysis is the basis for many COSAM formulas.
- Emphasis is primarily on Broadband Tx Noise & Rx Adjacent Signal.
- Determines additional antenna isolation required to make interference less than the ambient noise plus Rx system noise,

T_{interrference} < T_{ambient} + T_{RxNF}.

- Equipment database supplies all necessary electrical characteristics.
 - The RF equipment data base is critical to the value of COSAM. This is also a challenging aspect of using COSAM.

PACIFIC

Topside Intermodulation (IM) Locate, Mitigate

Method

- A two-frequency test procedure that use elementary direction finding techniques.
- Concentration on IM signals of the highest, lowest order.
- Location followed by mitigation.
- Lowest order (Q) for a detected IM
 - Minimize an L1 norm under a linear Diophantine equation constraint.

 $N_1 F_{T1} + N_2 F_{T2} = F_{IM}$ (Diophantine equation)

- $Q = |N_1| + |N_2|$ (L1 norm)
 - F_T transmit frequencies
 - **N** integers
 - **Q** intermodulation order

Possible basis for IM limited frequency plans?

Cross Discipline Collaboration Advanced Enclosed Mast/Sensor (AEM/S) System

- Affordable signature control of legacy antenna systems.
- Flat surfaces for mounting "future" phased array antenna.
- Less blockage than conventional metallic masts.
- Reduced maintenance (antennas are not exposed to the elements).
- Less topside weight.
- Less wind loading
- Other advantages . . .

Transition to Acquisition Program LPD-17 Amphibious Dock Landing Ship

EM Topside Integration Design

Modeling

Simulation

18	ANE PT		AND P1		ANT PT		ANT P1		Transmitter Frequency Separation Item
	Shakespeere 300		Shakespears 310		Shekespense 200		Shakospaure 303		
	2-30 MHz		2-30 MHz		2-30 KHz		2-30 WHz		
	RF-352A-02		P#-312A-42		RF-3824-12		RF-382A-02		
	SE-5901-24-100		FF-9194-FA.000		RF-9055	RF-9206-PA-110		SF-6004/PA-61	
	NP-5043		P#-3148		AF-2045		RF-1045		Desparato
DX .	RF-6000 k/T		FF-902801T		RF-90209/T		RF-50299,7		
ANT ST	RAG (42)	TAS (rill)	RACINE	TAL URL	RAG (HD)	TATIONS	843(40)	TATIONI	
Stakespece 382	55	.33	-12	-30	- 49	27	-16	34	2.83%
2.00 BBy	52	11	1.00	10	.45	7	-0	14	5.80%
	90	. 7	- 47		- 44	1	- 40	0	18.80%
RF-3423-31	90	6	- 47	8	- 64	. 10	- 10	0	18,80%
	30	1	47	41	44	1	(4)	0	28,80%
	00	8	17	6	-84	2	dt.	0	26.80%
HE-CASOFUT	Not Con	spanitie	Not Ge	npatible	RetGo	epsible	Not Car	rpation -	
ANE 31	FIAS (#91)	1 MB politic	R45 (40)	TAX (IP)	P.A5 (d3)	TABLIER	RAS (JB)	TA5 (35)	i unsur
Shake sprint 280	48	- 20	518	30	34	27	20	2.4	0,507%
2-31 9814	- 23	12	. 22	10	12	Ť	14	4	8,40%
	- P	7	9		0		-0	0	10,00%
F#F-382A.0.2	- 2				0			0	15,005
	0.0	1			- 6			0	29,90%
TIF-0845	- 2	100	0			1 E.	¢	1 A A	25,40%
RF-58298/T	10.000	10.00%	- 1111	10.00%	-	1.10%		7,60%	
AKT 91	RA5 ((8)	TAS (UR)	R#5 (dB)	5A5 (#8)	FLAS (dB)	TAS((8))	RAS (dB)	TAS (HE)	
Distance 191	1	36	22	27	19	24	18	21	2,50%
2-31 KHz		18	0	1.	0	4	0	1	5.40%
and the second second	- 0				6		0		10,00%
PE-3824-00			· •		0.0		0		16,00%
10.0041					0		0		20,00%
RF-9461				2	0		0		25,00%
OF MORE T		D-DBML		3.06/16		1.10%		1.00%	

Qualified RF Engineers

