Introduction

- Robert Louie, P.Eng, PE
- Managing Director
- Dan McGreer, P.Eng
- Principal Naval Architect

9 Shipyards worldwide

- Norway: Vard Aukra, Vard Brattvaag, Vard Brevik, Vard Langsten, Vard Søviknes
- Brazil: Vard Promar
- Romania: Vard Braila, Vard Tulcea
- Vietnam: Vard Vung Tau

VARD is present in Norway, Romania, Vietnam, Brazil, Croatia, Italy, Poland, Canada, US, India, Chile and Singapore with various entities supporting the shipbuilding process.
Shipbuilding and Marine Industry

- Ships are transport and platform vessels that are complex to design and build
- Requires multi-discipline engineering knowledge to create innovative solutions and overcome design/build challenges
- Unique challenges that require close collaboration between our different disciplines of engineering
- With the current shipbuilding industry there is a need for electrical engineers with knowledge in marine applications
- Knowledge of regulatory framework
Shipbuilding and Marine Industry

- The Canada Government is renewing its fleet
- Wants to re-establish the shipbuilding industry
- Embarked on a NSS program in 2010
- Need to rebuild the lost shipbuilding talent
- IRB/ITB requires Canadian engineers
- Need to grow expertise
National Shipbuilding Strategy

Combat Ship Contract
Irving Shipbuilding
Halifax Shipyard

- Arctic Offshore Patrol Ship (AOPS)
- Canadian Surface Combatant (CSC)

Non-Combat Ship Contract
Seaspan
Vancouver Shipyard

- Offshore Fisheries Science Vessel (OFSV)
- Offshore Oceanographic Science Vessel (OOSV)
- Joint Support Ship (JSS)
- Polar Icebreaker (PIB)
AROUND THE WORLD

NEW ZEALAND

BRAZIL

CHILE

CHINA

UNITED KINGDOM

CANADA

INDONESIA

NORWAY

United States
SHIP AND MARINE STRUCTURE DESIGN

Concept Development
- Basic Naval Architecture
- Feasibility Studies
- Cost Estimates
- Vessel Specification
- Propulsion Trade-off Studies
- HAZID / HAZOP Analysis
- Condition Analysis

Engineering Analysis
- Naval Architecture
- Structural Designs
- Machinery Arrangements
- Electrical System Design
- Automation Design
- Integrated Bridge Systems
- Equipment Selection
- Marine Systems Design
- Outfit Drawings
- Environmental Applications

Shipyard Support
- Functional Design Package
- Construction Specifications
- Production and Build Support
- On-site Supervision
- Trials Supervision
- Equipment Procurement

![Concept Development](image1)

![Engineering Analysis](image2)

![Shipyard Support](image3)
Ocean-based industries’ value-added to double (from USD 1.5 to 3 trillion) by 2030

Challenges for the Shipbuilding & Marine Sector
Science, technology and innovation in tomorrow’s ocean economy: some drivers

- Enhancing competitiveness via efficiency gains/cost-saving (e.g. autonomous ships)
- Expanding technological frontiers (e.g. complex subsea engineering)
- Responding to climate change and sustainability challenges (e.g. biotechnology, traceability, green technologies)
- Improving knowledge of the ocean environment, bio-diversity and marine ecosystems (e.g. new sensors, sea-floor mapping, satellites)

Key role of science, technology and innovation in the future of the ocean economy with important policy implications
Propulsion Options – Case Study VARD 7 095

<table>
<thead>
<tr>
<th>Principal particulars</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>95.0 m</td>
</tr>
<tr>
<td>Breadth</td>
<td>14.0 m</td>
</tr>
<tr>
<td>Depth</td>
<td>7.1 m</td>
</tr>
<tr>
<td>Design draft</td>
<td>4.0 m</td>
</tr>
<tr>
<td>Speed</td>
<td>24 knots</td>
</tr>
<tr>
<td>Range</td>
<td>7000 nm</td>
</tr>
<tr>
<td>Installed Power per shaft</td>
<td>7000 kW</td>
</tr>
</tbody>
</table>

Nov 30, 2016
Propulsion Options for OPVs

- Traditionally OPVs have twin screw propulsion systems with a reduction gear and one powerful diesel on each shaft.
- This configuration is reliable, robust and cost effective but is not efficient at slow speeds.
- At cruising speeds OPVs are typically operated on one shaft with the other shaft trailing.
Hybrid Propulsion Options for OPVs

- Addition of a electric motor/generator on each shaft greatly increases the flexibility of the propulsion plant.
- At slow speeds the main diesels are shutdown and the ship is propelled by the electric motors (PTI) from the auxiliary generators. The generators are more optimally loaded, therefore, they have better fuel efficiency.
- The motor can also be used as a generator (PTO) at higher power levels enabling more efficient fuel consumption with the main engines.
Electric Propulsion – Reducing Ship Noise

Baseline speed
Further Reductions in Emissions & Noise

- Still require combustion engines to generate electrical power
- Energy generated by burning fossil fuels
- Air emissions: SOx, NOx, PM, CO₂
- Diesel engine limitations: noise, efficiency, varying loads
- LNG engine limitations: poor response
- Advances in battery based energy storage systems
- Development of the Electric Hybrid
Environmental and cost savings

Illustration

Environmental savings
- 15-25% Potential Fuel savings
- 25-30% reduction in NOx emissions
- 15-25% reduction in CO2e emissions

Cost savings
- Reduction maintenance
- Operational gains
- Faster response
- Reduced noise and emissions
- Less maintenance, more uptime engines

Source: DNV-GL
Optimal Power Distribution

System overview

- DC-Link distribution
- Distributes energy efficient and economical (only needs DC/AC part of drive)
- Enables lighter switchboards
- Heavy consumers have dedicated drive units connected to DC-link
- Power can be distributed to vessels traditional (AC)electrical network
- Enables controlled short circuit currents
Application areas

Peak Shaving
- Level the power seen by engines
- Offset the need to start new engine
- Improve fuel efficiency
- Reduce engine running hours

Spinning Reserve
- Backup for running genset
- Fewer engines needed online
- Improved fuel efficiency
- Reduced engine running hours
Application areas

Strategic Loading
- Charging and discharging ES media in such a way that it optimises the operating point of the genset
- Power is produced at peak efficiency

Enhanced Dynamic Support
- Instant power in support of running genset
- Enable use if “slower” engines:
 - LNG/DualFuel engine
 - Fuel Cells
Application areas

Enhanced Ride Through
- ES solution can give UPS like functionality to the power system
- New way of achieving high ERN numbers
- Higher power system availability

Zero Emission Operation
- Zero emissions in harbour
- Quiet engine room
- Ferry operation

Zero Emission Challenges
- 1000 kWh energy requirement
- Size
- Charging
- Ferry application:
 - Charge while car unload/load
 - 15 minutes
 - 4 MW charge power
Life time

Dimensioning

- Degradation / Fade After 10 Years
- Spare / Margins
- Actual Energy Needed

Degradation due to

- Cycling
- Cycling Depth And Cut Of Voltage
- Calendar Effect
- Cell Temperature
- Charging \ Discharging Rates
Equipment

Battery Rack

Battery Charger

Considerations

- Closed loop air cooled batteries
- Air conditioned room
- Watermist Fire Fighting System
- Battery Power – Battery Safety
Human Interface and Automation
Shaft Generator mode

- One engine operation
- Optimized fuel consumption
- Seamless power distribution with battery peak shaving.
Bridge Navigation and Accommodations

- Human interface, comforts
- Conveniences: TV, radio, internet, networking, telephones
- CCTV, public address systems
- Radio communications, navigation, mapping, nav lights,
- Monitoring and controls for the operators
Automation Integration

- Integration of the different equipment and systems especially between the power and controls
- Power management system: protection, coordination
- Advent of ASDs (VFDs) for precise control of electrical motors
- Sensors: speed, position, GPS
- Dynamic positioning
Opportunities

- Environmental Sustainability
- Other countries such as Norway have mandated the use of clean technology in all of their new vessels
- IMO’s requirement for reducing greenhouse gases
- Human Sustainability
- Putting humans out of harm’s way
- Solution: Autonomous Ships
Opportunities

- Need for electrical engineers that have marine knowledge with the ability to work in a multi-discipline environment
- Vard supports UBC’s decision to award funding to support establishment of a Marine Systems Research Cluster at UBC
Thank you for your attention